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Abstract sions are made, e.g., concerning HW/SW-partitioning, and
the complexity of BBs. Hardt and Rosenstiel have pointed

: . o ~ out that detailed analysis data, e.g., on memory access and
Instrumenting Qf bundlng.blocks can b_e supp_orted effi- dynamic instruction usage are important for performance
ciently by detailed e_maIyS|s. of dynamllc Instruction usage. e HW/SW-partitioning [9]. Of course, this cannot be

In many cases the instruction usage is specific to the aP-getermined statically, as the control structure is in general

plication domain in view. We present a very fast analysis a5 gependent. For evaluation co-simulation can be used.
approach based on high level system models. Complex aP5everal approaches to co-simulation have been proposed,

plication characteristics, e.g., the average number of not e.g., [10, 3, 4]. One major problem is the design complex-

interrupted instruf:tions can be determined. This_is much ity of HW/SW-systems, which leads to very long simula-
more than execution of, e.g., C-programs can provide. tion times. Other approaches provide executable HW/SW-
. implementations for dynamic analysis, e.g., [8]. This is
1 Introduction much faster than simulation but the instrumentation of the
) executable implementation is very specialized to one single
Today's systems are highly complex and composed outig g6t system. In this paper, we propose a different approach
of several building blocks (BB), each block possibly con- ¢4 ystem level analysis of HW/SW-systems. An abstract
sisting of a HW-part and a SW-part. Thus the complexity el is provided for analysis of dynamic instruction usage.
of a single BB is reasonably high (e.g., processor cores, Mi-This model is based abstract state machin¢aSMs) and

crocontrollers, floating point and memory units). The per- ig iheoretically well founded. The instrumentation of differ-
formance of a BB is determined by the HW constitutingthis ot jnstruction sets and also of several instructions with the

block and by the SW executed on this block. As each pro- game functionality but different execution times becomes
grammable BB has its own instruction set, the evaluation very easy. The main features of this approach are easy de-
of performance trade-offs is not trivial. Furthermore, the termination of the dynamic instruction mix (e.g. the aver-
instruction set available to the system programmer resultS;ge ength of not interrupted instructions or the length of
from the instruction sets of all building blocks. For opti- ,struction sequences without data dependencies) by very

mization of a HW/SW-BB as well as of a complete system, high simulation speed compared to traditional simulation

detailed evaluation of instruction usage is needed. This SYS-approaches. This leads to a very valuable support for the

tem level optimization does not focus in the implementation g 51yation of design decisions. Besides this, comfortable
of a single instruction because this is subject of the HW- debugging features are provided by &&M simulator.

design phase of a BB. Most systems are optimized foraspe- | this paper, we present a short overview of the basic
cial application domain. System optimizations reflects the ,ions ofASMs, a first case study, and some experimental
domain specific characteristics, e.g., deep pipelines are onlyresults to demonstrate the improvements of our approach.
efficient if large basic blocks are to be computed. To de-

termine these domain specific characteristics fast dynamicp  Basic Concepts of Abstract State Machines
analysis of the instruction mix of the SW-part of a single

BB as well as of the complete HW/SW-system remains cru-  In this section we introduce the notionsA$Ms needed
cial. Based on this analysis data, important design deci-in this paper, as implemented in the&M-SL specifica-

High level design decisions as HW/SW-partitioning and



tion language [5] (the reader interested in a deeper studyThe update seh—which depends on the state—is deter-

of ASMs should consult Gurevich’s definition aiSMs in
[7]). We first describe the computational model underlying
ASMs, and then their syntax and semantics.

2.1 Computational Model

Computations Abstract state machines define a state-
based computational model, where computationss) are
finite or infinite sequences of statés; }, obtained from a
given initial state S, by repeatedly executinggansitions
Such runs can be intuitively visualized as

§ § On
So —1>51 —2>52 —)Sn

where theS; are the states and tligthe transitions.

States The statesare algebras over a givesignatureX (or

Y-algebragfor short). A signatur& consists of a set dfa-

sic typesand a set ofunction nameseach function namg

coming with a fixed arity» and typeTy ... T,, — T, where
theT; andT are basic types (writtefi : 7y ... T, — T, or

simply f : T'if n = 0). A X-algebra (or statey consists
of: (i) a nonempty sef * for each basic typ&' (thecarrier

setsof S), and(ii) a function

fs T x ... xT5 =75

for each function nam¢g : 7 ...7, — T in X (thein-
terpretationof the function namef in S). Some function
names int are declared astatic(indicating that they have

mined by evaluating it$' a distinguishedransition rule P,
called theprogram? Note that the above definition is only
applicable ifA does not contain any two updates z, y)
and(f,z,y') withy # ¢/ (i.e., if A is consistent

2.2 Language

Terms Terms(over the given signaturg) are used to refer
to elements of the carrier sets (the admissitakie3, and
usually denoted by the lettér Each terny has a typel’
(writtent : 7). The syntax of terms is defined recursively:
if f:17...17, — T is a function name i}, andt¢; is a
term of typeT; (fori = 1,...,n), thenf(ty,...,%,) is a
term of type7'.3 The meaning of a term (of type7) in a
statesS is a valueS(t) € 7 defined by

S(f(t1, ... 1) = £5(S(t), ..., S(tn)).

Transitionrules While terms denote values, transition
rules fules for short) denotaipdate setsand are used to
define the dynamic behaviour of asM: the meaning of a
rule R in a stateS is an update seh s (R).

Theprogram P is a distinguished rule which determines
the ASM runs: each stat§;., (: > 0) is obtained by firing
the update seh 5, (P) at.S;. Visually:

As, _,(P)

ASD(P)

Asy (P)
—

So S

the same interpretation in each computation state), whileThe syntax and semantics of rules is as follows.

other are declared adynamic(indicating that their inter-

pretation may be altered by the transitions). Any signature

¥} must contain a basic ty@@OOL, static nullary function
names (constanttjue : BOOL, false: BOOL, and the usual
boolean operationsA( Vv, etc.)! Finally, there is a spe-
cial constanundef : T" for any basic typd’ exceptBOOL
When no ambiguity arises we omit explicit mention of the
statesS (e.g., we write7” instead of7* for the carrier sets,
andf instead of's for static functions, as they never change
in the course of a computation).

Transitions Transitions transform a staféinto its succes-
sor states” by changing the interpretation of some dynamic
function names on a finite number of points.

More precisely, the transition transformisgnto S’ re-
sults from firing a finiteupdate setA at S, where theup-
datesare of the form(f,z,y), wheref : 7y ... T, = T'is
a dynamic functionname& € 7; x ... x 7,,andy € T.
The stateS’ resulting from firingA at S is such that the
carrier sets are unchanged (i.#5" = 75 for each basic
typeT"), and, for each function namge

—~_ Juw if (f,Z,y) €A
fs: () = { f5(Z) otherwise.
LA function f : T;...T, — BOOLis also called aelation over
T ... Th.

Update rule Theupdaterule has the syntax

R = f(t1,...
wheref : 1y ...7, — T is a dynamic function name in
¥, t; :T;for: = 1,...,n,andt : 7. Such an update rule
produces a single update:

As(R) = {([,(S(t),...,5(ta)), S(1)) }-

Intuitively, the termg; andt are evaluated—in the state—
to valuesz; = S(t;), y = S(t); then, the interpretation of
fon(zy,...,z,) is changed tq.

Block rule Theblockrule

R = Ri...R,

o) =1

combines the effects of more transition rules:
As(R) = UL, As(Ri).

The execution of a block rule correspondsstmultaneous
execution of its subrules.

2In this way, abstract state machines—which can be considered, in a
first approximation, as given by the programtogether with an initial
stateSo—model discrete dynamic systems.

31f n = 0 the parentheses are omitted, i.e. we wyitestead off ().

4For example, a block rula := b, b := a exchangea andb. Note
also that the use of block rules may lead to inconsistent update sets.



Conditional rule Theconditionalrule has the syntax datatype JUMP_COND ==
) { TRUE, FALSE, EQ, NE, LT, LE, GT, GE }
R = if Gthen Rrelse Rp datatype REG == { R : INT }
datatype DISP == { Disp : INT }

where( is a boolean term. Its meaning is, obviously: datatype INSTR ==

Ag(Rr) Iif S(G) = true { Il arithmetic-logic instructions (MAC)
Ag(R) = As(Rp) otherwise OR : REG REG REG, AND : REG REG REG,
SVALE ’ /I ... all MAC instructions have this format
The ASM-SL Environment /I ... except ZERO, FF (1 op) and CMP (2 ops)

. . : ZERO : REG, FF : REG, CMP : REG REG,
The basiASM constructions described above are partof IO, branch and special instructions (I0C)

the ASM-SL specification language [5], which also contains LD : REG REG DISP,

features for defining types, functions, and transitions,and a // ... LDA, LDPA and ST have the same format

set of predefined types (booleans, integers, etc.) and generic JUMP : REG DISP JUMP_COND, HALT }

data structures (tuples, lists, sets, etc.), which help to modelResources The resources needed for the execution of in-
a wide range of systems in a concise wagM-SL is the  sStructions are: the program memérfinstr  in the ASM
basis of a tool environment, called “T#&M Workbench?, model) and the program counté?MA—Program Memory
developed at Paderborn University by the first author, which Address), the data memorsnén), the general-purpose reg-
supports syntax- and type-checkingAgM specifications  isters feg ), the condition code flagsgg, Zero , Divz ):

as well as their simulation and debugging. W&M model static function instr : INT -> INSTR ==

of the case study discussed in this paper has been checked // (the program)

and executed using that tool. ynamic function PMA —: INT

initially 0
dynamic function mem : INT -> INT
3 Case Study: a VLIW Instruction Set initially /I (initial memory configuration)

dynamic function reg : REG -> INT
In this case study an instruction set of a VLIW proces-  initially { } /I (registers initially undef.)
f . . . dynamic function Neg initially false
sor based orASMs is presented. This instruction set iS gy amic function Zero initially false
used as a kind of “abstract assembler code” for the zCPU,dynamic function Divz initially false
a VLIW processor used as control unit in the SIMD par-  arthmetic-logical instructions (MAC) The arithmetic-
allel architecture APE100 developed at INFM]. The  |ggical instructions are processed by a transition rule
zCPU processor itself has already been modelled at the RTy;aTHrULEWhich performs a case distinction and, accord-

level by means oASMs in [2]. In the APE100 architec- inq to the current instruction, fires the particular transition
ture, the abstract assembler code is mapped to executablg,|e needed to execute that instruction:

VLIW code_for the zCPU by a code generator. However, i nsition MATH_RULE ==

the instruction set under study could be implemented also case instr (PMA) of

by a traditional pipelined architecture, or by a superscalar AND (RR, R1, R2) : DO_AND (RR, R1, R2) ;

processor, or whatever: in this case study we want to ab- ~ OR (RR. R1, R2) ~ : DO_OR (RR, R1, R2) ;
. . . . /I ... the same for other MAC instructions

stract from particular implementations, and concentrate in-

stead on the study of the application domain specific usag

of instructions, by means of aaSM-based methodology

which can be easily generalized to other instruction sets.

eEach instruction is modelled by a transition rule, &.g.:
transition DO_OR (RR, R1, R2) ==

Logicallnstr (RR, or_fun (reg (R1), reg (R2)))
transition DO_AND (RR, R1, R2) ==

Logicallnstr (RR, and_fun (reg (R1), reg (R2)))
Note the use of the static functions_fun , and _fun , etc.:
there is one such static function for each available arith-
| metic operation, such that the functional aspects of the spec-
ification are separated from the operational behaviour (state

structions). This groups can also be understood as differenltrans'tt'.ons)l'.S;?\IC”%‘;d_fg r ;Estance—m thle 'case of logical
building blocks providing specialized instructions. operations i 0 y the common rufe:

The instruction set is modelled by a data tyg8TR, and ~ tansition Logicalinstr (RR, value) == block
reg (RR) := value

The instruction format The instruction set under study—
as most RISC instruction sets—consists of register-register
arithmetic-logical instructions, load and store instructions
for memory access, and branch instructions: we nijgtish

between two groups of instructions, the arithmetic-logical
ones (MAC instructions for short) and all the other (I0C in-

auxiliary data typesSUMPCOND representing the possible Neg = (value < 0)
branch conditions to be testgedrREG for register addresses, Zero := (value = 0)
DISP, for the displacement field in load/store instructions. end
5The Italian National Institute for Nuclear Physics. 7In this example, two separate memories are used for the program and

% Note that we abstract from the concrete representation of such condi-for the data, such that instructions and data can be accessed simultaneously.
tions by using symbolic names (constructors) with obvious meanings. 8We show only two examples, rules for other instructions are similar.



Load, store and branch instructions (IOC) Similarly as
for MAC instructions, the main rule is a case distinction:
transition I0C_RULE ==
case instr (PMA) of
LD (RD, RA, disp) : DO_LD (RD, RA, disp) ;
ST (RD, RA, disp) : DO_ST (RD, RA, disp) ;
"
Modelling load/store instructions is very simple, for in-
stance, the rules for the instructiaris, ST are:
transition DO_LD (RD, RA, disp) ==
reg (RD) := mem (reg (RA) + disp_addr (disp))
transition DO_ST (RD, RA, disp) ==
mem (reg(RA) + disp_addr (disp)) := reg (RD)
where the static functiodisp _addr extracts the address
contained in the displacement field of the instruction.
Modelling branches is slightly more complicated, as it
implies testing the branch condition against the flags:

static function eval_cond (cond, N, Z)
case cond of

TRUE : true ; FALSE : false ;

EQ . Z = true ; NE . Z = false ;

LE : N =true 0o r Z = true ; ...
end

transition DO_JUMP (RA, disp, cond)
if eval_cond (cond, Neg, Zero)
then PMA = reg (RA) + disp_addr (disp)
else PMA = PMA + 1 end
The program counter (PMA) Finally, a rule is needed to
increment the program counter in normal situations, i.e.
when the current instruction is not a branch:
transition INCR_PMA ==
if not (is_jump_instruction (instr (PMA)))
and (instr (PMA) <> HALT)
then PMA = PMA + 1 end
(whereis _jump _instruction is a static function return-

ing true whenever its argument igdMPinstruction).

The instruction set model The executable model of the
instruction set is then simply obtained by putting all the
pieces together into the following rule (tASM program):

transition ZCPU
block MATH_RULE

IOC_RULE INCR_PMA end

The whole executable model of the instruction set is quite

compact (ca. 450 lines @fSM-SL code) and was obtained
very quickly from an existing specification on paper

4 Simulation and Experimental Results

TheASM model of the instruction set has been tested us-

ing TheAsMWorkbench® on a simple test program which

? About three days of work, including developing from scratch the ex-
ample program used for the experiments.
10 A snapshot of the tool is shown in Figure 1, where a fragment of the
test program is visible in the browser window (the upper left window) and
some observable quantities of interest (like the programmterPMAand
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Figure 1. The ASM Workbench

multiplies matrices of arbitrary size, hand-compiled from a
high-level algorithm through a simple compilation scheme.

Instrumenting the model

In order to collect any information of interest about in-
struction usage in the course of the simulation, we had to
“instrument” the instruction set model: this can be done eas-
ily, as ASMs are a general-purpose specification and mod-
elling language, and not an hardware description language.
In fact, one simply extends the model by the necessary func-
tions and transitions which do the bookkeeping, which can
be freely mixed with those constituting the actual system
model. Forinstance, if we want to know the number of jump
instructions that our test program goes through during its
execution, we just introduce a dynamic functi@unter
and a transitioCOUNTIUMPS

dynamic function counter initially 0
transition COUNT_JUMPS ==
if (is_jump_instruction (instr (PMA)))
then counter := counter + 1 end

and then includ€OUNTIUMPSIn the block constituting the
ASM program to make the counting effective:

transition ZCPU == block
MATH_RULE I10C_RULE INCR_PMA // system model
COUNT_JUMPS /I bookkeeping
end

From this example it should result clear how any other in-
teresting measurements on instruction usage can be defined
and incorporated into the simulation.

Instruction usage measurements
The results collected by simulating the execution of the

the contents of some relevant registers and memory locations) can be S atrix multiplication program for different sizes of the ma-

in theterm observation windoibottom right). The other visible window
(run optiong contains simulation status information, e.g. the programto be
executed, in this case consisting of the &P and an haltingandition.

tricesA and B (A of sizem x p, B of sizep x n, written
m x p x n for short), are presented in the following table. As



expected, the proportions of the executed instructions rela-of HW/SW-systems. The presented analysis approach pro-
tive to different instruction groups are quite stable, except vides much more information than, e.g., the execution of a
for branches, which become less influent as the sizes grow.C-program which is derived from the ASM model basis.
Further work will concentrate on the adaption of design

2X2X2 2X3X2 3X3X3 5X5x5 X i
No.ofInst| abs rel| abs rel| abs rel| abs rel space exploration. MoreoveksMs could be used for veri-
Logical 1 03 1 02 1 01 1 00 fication (see for instance [6], where the theorem prover KIV
Additive | 155 51.3| 215 51.9| 478 525| 2066 53.1 is used to verify the correctness of a8M-based model of
Multipl. 36 119| 52 126/ 117 128| 525 13.5 ;
Division 0 00| 0O 00| 0 00 0 00 the DLX architecture).
MACinstr.| 192 63.5| 268 4.7| 596 65.4| 2592 66.6
Load 63 209] 87 210] 188 206] 810 20.8 References
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