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Abstract

High level design decisions as HW/SW-partitioning and
instrumenting of building blocks can be supported effi-
ciently by detailed analysis of dynamic instruction usage.
In many cases the instruction usage is specific to the ap-
plication domain in view. We present a very fast analysis
approach based on high level system models. Complex ap-
plication characteristics, e.g., the average number of not
interrupted instructions can be determined. This is much
more than execution of, e.g., C-programs can provide.

1 Introduction

Today’s systems are highly complex and composed out
of several building blocks (BB), each block possibly con-
sisting of a HW-part and a SW-part. Thus the complexity
of a single BB is reasonably high (e.g., processor cores, mi-
crocontrollers, floating point and memory units). The per-
formance of a BB is determined by the HW constituting this
block and by the SW executed on this block. As each pro-
grammable BB has its own instruction set, the evaluation
of performance trade-offs is not trivial. Furthermore, the
instruction set available to the system programmer results
from the instruction sets of all building blocks. For opti-
mization of a HW/SW-BB as well as of a complete system,
detailed evaluation of instruction usage is needed. This sys-
tem level optimization does not focus in the implementation
of a single instruction because this is subject of the HW-
design phase of a BB. Most systems are optimized for a spe-
cial application domain. System optimizations reflects the
domain specific characteristics, e.g., deep pipelines are only
efficient if large basic blocks are to be computed. To de-
termine these domain specific characteristics fast dynamic
analysis of the instruction mix of the SW-part of a single
BB as well as of the complete HW/SW-system remains cru-
cial. Based on this analysis data, important design deci-

sions are made, e.g., concerning HW/SW-partitioning, and
the complexity of BBs. Hardt and Rosenstiel have pointed
out that detailed analysis data, e.g., on memory access and
dynamic instruction usage are important for performance
driven HW/SW-partitioning [9]. Of course, this cannot be
determined statically, as the control structure is in general
data-dependent. For evaluation co-simulation can be used.
Several approaches to co-simulation have been proposed,
e.g., [10, 3, 4]. One major problem is the design complex-
ity of HW/SW-systems, which leads to very long simula-
tion times. Other approaches provide executable HW/SW-
implementations for dynamic analysis, e.g., [8]. This is
much faster than simulation but the instrumentation of the
executable implementation is very specialized to one single
target system. In this paper, we propose a different approach
for system level analysis of HW/SW-systems. An abstract
model is provided for analysis of dynamic instructionusage.
This model is based onabstract state machines(ASMs) and
is theoretically well founded. The instrumentation of differ-
ent instruction sets and also of several instructions with the
same functionality but different execution times becomes
very easy. The main features of this approach are easy de-
termination of the dynamic instruction mix (e.g. the aver-
age length of not interrupted instructions or the length of
instruction sequences without data dependencies) by very
high simulation speed compared to traditional simulation
approaches. This leads to a very valuable support for the
evaluation of design decisions. Besides this, comfortable
debugging features are provided by theASM simulator.

In this paper, we present a short overview of the basic
notions ofASMs, a first case study, and some experimental
results to demonstrate the improvements of our approach.

2 Basic Concepts of Abstract State Machines

In this section we introduce the notions ofASMs needed
in this paper, as implemented in theASM-SL specifica-



tion language [5] (the reader interested in a deeper study
of ASMs should consult Gurevich’s definition ofASMs in
[7]). We first describe the computational model underlying
ASMs, and then their syntax and semantics.

2.1 Computational Model

Computations Abstract state machines define a state-
based computational model, where computations (runs) are
finite or infinite sequences of statesfSig, obtained from a
given initial state S0 by repeatedly executingtransitions.
Such runs can be intuitively visualized as

S0
�1�! S1

�2�! S2 : : :
�n�! Sn : : :

where theSi are the states and the�i the transitions.

States Thestatesare algebras over a givensignature� (or
�-algebrasfor short). A signature� consists of a set ofba-
sic typesand a set offunction names, each function namef
coming with a fixed arityn and typeT1 : : :Tn ! T , where
theTi andT are basic types (writtenf : T1 : : : Tn ! T , or
simply f : T if n = 0). A �-algebra (or state)S consists
of: (i) a nonempty setT S for each basic typeT (thecarrier
setsof S), and(ii) a function

fS : T S
1 � : : :� T S

n
! T S

for each function namef : T1 : : :Tn ! T in � (the in-
terpretationof the function namef in S). Some function
names in� are declared asstatic(indicating that they have
the same interpretation in each computation state), while
other are declared asdynamic(indicating that their inter-
pretation may be altered by the transitions). Any signature
� must contain a basic typeBOOL, static nullary function
names (constants)true : BOOL, false: BOOL, and the usual
boolean operations (̂, _, etc.).1 Finally, there is a spe-
cial constantundef : T for any basic typeT exceptBOOL.
When no ambiguity arises we omit explicit mention of the
stateS (e.g., we writeT instead ofT S for the carrier sets,
andf instead offS for static functions, as they never change
in the course of a computation).

Transitions Transitions transform a stateS into its succes-
sor stateS0 by changing the interpretation of some dynamic
function names on a finite number of points.

More precisely, the transition transformingS into S0 re-
sults from firing a finiteupdate set� at S, where theup-
datesare of the form(f; x; y), wheref : T1 : : :Tn ! T is
a dynamic function name,x 2 T1 � : : :� Tn, andy 2 T .
The stateS0 resulting from firing� at S is such that the
carrier sets are unchanged (i.e.,T S

0

= T S for each basic
typeT ), and, for each function namef :

fS0(x) =

�
y if (f; x; y) 2 �
fS(x) otherwise.

1A function f : T1 : : : Tn ! BOOL is also called arelation over
T1 : : : Tn.

The update set�—which depends on the stateS—is deter-
mined by evaluating inS a distinguishedtransition ruleP ,
called theprogram.2 Note that the above definition is only
applicable if� does not contain any two updates(f; x; y)
and(f; x; y0) with y 6= y0 (i.e., if � is consistent).

2.2 Language

Terms Terms(over the given signature�) are used to refer
to elements of the carrier sets (the admissiblevalues), and
usually denoted by the lettert. Each termt has a typeT
(written t : T ). The syntax of terms is defined recursively:
if f : T1 : : : Tn ! T is a function name in�, andti is a
term of typeTi (for i = 1; : : : ; n), thenf(t1; : : : ; tn) is a
term of typeT .3 The meaning of a termt (of typeT ) in a
stateS is a valueS(t) 2 T defined by

S(f(t1; : : : ; tn)) = fS(S(t1); : : : ; S(tn)):

Transition rules While terms denote values, transition
rules (rules for short) denoteupdate sets, and are used to
define the dynamic behaviour of anASM: the meaning of a
ruleR in a stateS is an update set�S(R).

TheprogramP is a distinguished rule which determines
theASM runs: each stateSi+1 (i � 0) is obtained by firing
the update set�Si(P ) atSi. Visually:

S0
�S0

(P )
�! S1

�S1
(P )

�! S2 : : :
�Sn�1

(P )
�! Sn : : :

The syntax and semantics of rules is as follows.

Update rule Theupdaterule has the syntax

R ::= f(t1; : : : ; tn) := t

wheref : T1 : : :Tn ! T is a dynamic function name in
�, ti : Ti for i = 1; : : : ; n, andt : T . Such an update rule
produces a single update:

�S(R ) = f (f; (S(t1); : : : ; S(tn)); S(t)) g:

Intuitively, the termsti andt are evaluated—in the stateS—
to valuesxi = S(ti), y = S(t); then, the interpretation of
f on (x1; : : : ; xn) is changed toy.

Block rule Theblockrule

R ::= R1 : : : Rn

combines the effects of more transition rules:

�S(R ) =
Sn

i=1�S(Ri ):

The execution of a block rule corresponds tosimultaneous
execution of its subrules.4

2 In this way, abstract state machines—which can be considered, in a
first approximation, as given by the programP together with an initial
stateS0—model discrete dynamic systems.

3 If n = 0 the parentheses are omitted, i.e. we writef instead off().
4For example, a block rulea := b; b := a exchangesa andb. Note

also that the use of block rules may lead to inconsistent update sets.



Conditional rule Theconditionalrule has the syntax

R ::= if G then RT else RF

whereG is a boolean term. Its meaning is, obviously:

�S(R ) =

�
�S(RT ) if S(G) = true
�S(RF ) otherwise.

The ASM-SL Environment
The basicASM constructions described above are part of

theASM-SL specification language [5], which also contains
features for defining types, functions, and transitions, and a
set of predefined types (booleans, integers, etc.) and generic
data structures (tuples, lists, sets, etc.), which help to model
a wide range of systems in a concise way.ASM-SL is the
basis of a tool environment, called “TheASM Workbench”,
developed at Paderborn University by the first author, which
supports syntax- and type-checking ofASM specifications
as well as their simulation and debugging. TheASM model
of the case study discussed in this paper has been checked
and executed using that tool.

3 Case Study: a VLIW Instruction Set

In this case study an instruction set of a VLIW proces-
sor based onASMs is presented. This instruction set is
used as a kind of “abstract assembler code” for the zCPU,
a VLIW processor used as control unit in the SIMD par-
allel architecture APE100 developed at INFN5 [1]. The
zCPU processor itself has already been modelled at the RT-
level by means ofASMs in [2]. In the APE100 architec-
ture, the abstract assembler code is mapped to executable
VLIW code for the zCPU by a code generator. However,
the instruction set under study could be implemented also
by a traditional pipelined architecture, or by a superscalar
processor, or whatever: in this case study we want to ab-
stract from particular implementations, and concentrate in-
stead on the study of the application domain specific usage
of instructions, by means of anASM-based methodology
which can be easily generalized to other instruction sets.

The instruction format The instruction set under study—
as most RISC instruction sets—consists of register-register
arithmetic-logical instructions, load and store instructions
for memory access, and branch instructions: we distinguish
between two groups of instructions, the arithmetic-logical
ones (MAC instructions for short) and all the other (IOC in-
structions). This groups can also be understood as different
building blocks providing specialized instructions.

The instruction set is modelled by a data typeINSTR, and
auxiliary data typesJUMPCOND, representing the possible
branch conditions to be tested6, REG, for register addresses,
DISP, for the displacement field in load/store instructions.

5The Italian National Institute for Nuclear Physics.
6Note that we abstract from the concrete representation of such condi-

tions by using symbolic names (constructors) with obvious meanings.

datatype JUMP_COND ==
{ TRUE, FALSE, EQ, NE, LT, LE, GT, GE }

datatype REG == { R : INT }
datatype DISP == { Disp : INT }
datatype INSTR ==
{ // arithmetic-logic instructions (MAC)

OR : REG REG REG, AND : REG REG REG,
// ... all MAC instructions have this format
// ... except ZERO, FF (1 op) and CMP (2 ops)
ZERO : REG, FF : REG, CMP : REG REG,
// I/O, branch and special instructions (IOC)
LD : REG REG DISP,
// ... LDA, LDPA and ST have the same format
JUMP : REG DISP JUMP_COND, HALT }

Resources The resources needed for the execution of in-
structions are: the program memory7 (instr in the ASM
model) and the program counter (PMA—Program Memory
Address), the data memory (mem), the general-purpose reg-
isters (reg ), the condition code flags (Neg, Zero , Divz ):
static function instr : INT -> INSTR ==

// (the program)
dynamic function PMA : INT

initially 0
dynamic function mem : INT -> INT

initially // (initial memory configuration)
dynamic function reg : REG -> INT

initially { } // (registers initially undef.)
dynamic function Neg initially false
dynamic function Zero initially false
dynamic function Divz initially false

Arithmetic-logical instructions (MAC) The arithmetic-
logical instructions are processed by a transition rule
MATHRULEwhich performs a case distinction and, accord-
ing to the current instruction, fires the particular transition
rule needed to execute that instruction:
transition MATH_RULE ==

case instr (PMA) of
AND (RR, R1, R2) : DO_AND (RR, R1, R2) ;
OR (RR, R1, R2) : DO_OR (RR, R1, R2) ;
// ... the same for other MAC instructions

end

Each instruction is modelled by a transition rule, e.g.:8

transition DO_OR (RR, R1, R2) ==
LogicalInstr (RR, or_fun (reg (R1), reg (R2)))

transition DO_AND (RR, R1, R2) ==
LogicalInstr (RR, and_fun (reg (R1), reg (R2)))

Note the use of the static functionsor fun , and fun , etc.:
there is one such static function for each available arith-
metic operation, such that the functional aspects of the spec-
ification are separated from the operational behaviour (state
transitions), described for instance—in the case of logical
operations likeAND, OR—by the common rule:
transition LogicalInstr (RR, value) == block

reg (RR) := value
Neg := (value < 0)
Zero := (value = 0)

end

7 In this example, two separate memories are used for the program and
for the data, such that instructions and data can be accessed simultaneously.

8We show only two examples, rules for other instructions are similar.



Load, store and branch instructions (IOC) Similarly as
for MAC instructions, the main rule is a case distinction:
transition IOC_RULE ==

case instr (PMA) of
LD (RD, RA, disp) : DO_LD (RD, RA, disp) ;
ST (RD, RA, disp) : DO_ST (RD, RA, disp) ;
// ...

Modelling load/store instructions is very simple, for in-
stance, the rules for the instructionsLD, ST are:
transition DO_LD (RD, RA, disp) ==

reg (RD) := mem (reg (RA) + disp_addr (disp))
transition DO_ST (RD, RA, disp) ==

mem (reg(RA) + disp_addr (disp)) := reg (RD)

where the static functiondisp addr extracts the address
contained in the displacement field of the instruction.

Modelling branches is slightly more complicated, as it
implies testing the branch condition against the flags:
static function eval_cond (cond, N, Z) ==

case cond of
TRUE : true ; FALSE : false ;
EQ : Z = true ; NE : Z = false ;
LE : N = true o r Z = true ; // ...

end
transition DO_JUMP (RA, disp, cond) ==

if eval_cond (cond, Neg, Zero)
then PMA := reg (RA) + disp_addr (disp)
else PMA := PMA + 1 end

The program counter (PMA) Finally, a rule is needed to
increment the program counter in normal situations, i.e.
when the current instruction is not a branch:
transition INCR_PMA ==

if not (is_jump_instruction (instr (PMA)))
and (instr (PMA) <> HALT)

then PMA := PMA + 1 end

(whereis jump instruction is a static function return-
ing true whenever its argument is aJUMPinstruction).

The instruction set model The executable model of the
instruction set is then simply obtained by putting all the
pieces together into the following rule (theASM program):
transition ZCPU ==

block MATH_RULE IOC_RULE INCR_PMA end

The whole executable model of the instruction set is quite
compact (ca. 450 lines ofASM-SL code) and was obtained
very quickly from an existing specification on paper9.

4 Simulation and Experimental Results

TheASM model of the instruction set has been tested us-
ing TheASMWorkbench10 on a simple test program which

9About three days of work, including developing from scratch the ex-
ample program used for the experiments.
10A snapshot of the tool is shown in Figure 1, where a fragment of the

test program is visible in the browser window (the upper left window) and
some observable quantities of interest (like the program counterPMAand
the contents of some relevant registers and memory locations) can be seen
in theterm observation window(bottom right). The other visible window
(run options) contains simulation status information, e.g. the program to be
executed, in this case consisting of the ruleZCPU, and an halting condition.

Figure 1. The ASM Workbench

multiplies matrices of arbitrary size, hand-compiled from a
high-level algorithm through a simple compilation scheme.

Instrumenting the model
In order to collect any information of interest about in-

struction usage in the course of the simulation, we had to
“instrument” the instruction set model: this can be done eas-
ily, as ASMs are a general-purpose specification and mod-
elling language, and not an hardware description language.
In fact, one simply extends the model by the necessary func-
tions and transitions which do the bookkeeping, which can
be freely mixed with those constituting the actual system
model. For instance, if we want to know the number of jump
instructions that our test program goes through during its
execution, we just introduce a dynamic functioncounter

and a transitionCOUNTJUMPS:

dynamic function counter initially 0
transition COUNT_JUMPS ==

if (is_jump_instruction (instr (PMA)))
then counter := counter + 1 end

and then includeCOUNTJUMPSin the block constituting the
ASM program to make the counting effective:

transition ZCPU == block
MATH_RULE IOC_RULE INCR_PMA // system model
COUNT_JUMPS // bookkeeping

end

From this example it should result clear how any other in-
teresting measurements on instruction usage can be defined
and incorporated into the simulation.

Instruction usage measurements
The results collected by simulating the execution of the

matrix multiplication program, for different sizes of the ma-
tricesA andB (A of sizem � p, B of sizep � n, written
m�p�n for short), are presented in the following table. As



expected, the proportions of the executed instructions rela-
tive to different instruction groups are quite stable, except
for branches, which become less influent as the sizes grow.

2� 2� 2 2� 3� 2 3� 3� 3 5� 5� 5
No. of Inst. abs rel abs rel abs rel abs rel

Logical 1 0.3 1 0.2 1 0.1 1 0.0
Additive 155 51.3 215 51.9 478 52.5 2066 53.1
Multipl. 36 11.9 52 12.6 117 12.8 525 13.5
Division 0 0.0 0 0.0 0 0.0 0 0.0
MAC instr. 192 63.5 268 4.7 596 65.4 2592 66.6

Load 63 20.9 87 21.0 188 20.6 810 20.8
Store 12 4.0 16 3.9 36 4.0 150 3.8
Branch 35 11.6 43 10.4 91 10.0 341 8.8
IOC instr. 110 36.5 146 5.3 315 34.6 1301 33.4

Total 302 100% 414 100% 911 100% 3893 100%

Probably more interesting is a refined dynamic analysis
of the branch behaviour: here we separate taken branches
from not taken ones, and introduce another interesting mea-
sure, namely the average number of instructions executed
between two taken branches, including of course not taken
branches (calledaverage distancein the table):11

2�2�2 2�3�2 3�2�3 3�3�3
No. of Inst. abs rel abs rel abs rel abs rel
Taken 21 60.0 25 58.1 43 58.9 52 57.1
Not taken 14 40.0 18 41.9 30 40.1 39 42.9
Total 35 100% 43 100% 73 100% 91 100%
Average distance 13.38 15.56 14.33 16.52

The comparison between the cases2� 3� 2 and3� 2� 3
is particularly interesting: although the matrices to be mul-
tiplied have the same size, in the latter case the average
branch distance is noticeably worse: this is due to the fact
that the innermost loop (the shortest one) is iterated more
times. This is a typical case where the efficiency of the code
could be improved by unfolding the loop.

What we want to suggest here is that the proposed tech-
nique (simulation of abstract executable models), possibly
in combination with a prototype code generator12, can be
used to comparatively test the effectiveness of code opti-
mization techniques (on the compiler side) as well as of the
instruction set (on the architecture side).

5 Conclusions

In this paper we presented a novel approach to high-level
analysis based on abstract state machines, a formal method
with a rigorous mathematical semantics (but still easy to
understand and to use for practitioners without a particu-
lar training in formal methods). A case study demonstrated
the fast and easy determination of dynamic instruction us-
age information which is important for architecture design

11These measurements give, already at the level of abstraction of the
instruction set, some hint about the performance of the programs when
executed on a pipelined implementation of the instruction set (of course
more taken branches and shorter average branch distance imply a worse
pipeline performance).
12Which must be dedicated to the entire target system.

of HW/SW-systems. The presented analysis approach pro-
vides much more information than, e.g., the execution of a
C-program which is derived from the ASM model basis.

Further work will concentrate on the adaption of design
space exploration. Moreover,ASMs could be used for veri-
fication (see for instance [6], where the theorem prover KIV
is used to verify the correctness of anASM-based model of
the DLX architecture).
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